Python

Python 全栈 60 天精通之路

zglg · 某大厂算法工程师;Alicia · 美国顶尖学府 AI 博士后

2531人已买
详情
目录(121)

传统的 Python 教程

我见过很多的 Python 讲解教程和书籍,它们大都这样讲 Python:

先从 Python 的发展历史开始,介绍 Python 的基本语法规则,Python 的 list, dict, tuple 等数据结构,然后再介绍字符串处理和正则表达式,介绍文件等 IO 操作,再介绍异常处理, 就这样一章一章的。

很多都是枯燥的讲理论,越看越累,越累越不想看。

那么,有没有比这更好的方法呢?

这个 Python 专栏亮点

因为我也有过那段“自学” Python 的迷茫时期,所以我深知一个好的系统学习规划和老师讲解,是能够达到事半功倍省下我们程序员更多青春的关键。

所以我提炼出过往五年多的工作经验,并和远在美国学府进修 AI 专业博士后的老师一起撰写出了这个 60 天的专栏。

别的老师在介绍知识点时都会说“这东西是什么”,但我不想这样做。我觉得“为什么这东西是这样”或者“在什么场景适应什么需求有什么好处才会用这东西”,反而更能让你们对知识本身会有更深刻的理解。

本着有趣有味,纯碎干货,实用至上的原则,专栏五大特色:

第一,案例教学。纯碎的理论知识学起来很枯燥,但是结合一个一个的小案例,以此切入,学起来更爽。

第二,尽量做到有趣。图文并茂,加上有趣的例子、有趣的小项目,学起来更有乐趣。

第三,自成体系。就像侦探片那样,一步一步,一环扣一环地铺开 Python 技术栈。

第四,剖析一些 Python 常见的面试题。将理论知识讲解,结合案例,同时配备相关面试题,彻底打通理论知识。

第五,项目实战。不仅会有实战环境部署方案,还有实际的项目:Python GUI 开发项目,Kaggle 数据分析项目,机器学习实战项目。

专栏目录

为了让你们在自学时能依据自身的学习基础量体裁衣,我将整个 Python 内容按天划分,不仅能减轻你们每天的学习负担,而且还能有更效的检验学习效果。

一 Python 基础篇

Day 1:Python 两大特性和四大基本语法

Day 2:Python 四大数据类型总结

Day 3:list 和 tuple 的基本操作、深浅拷贝和切片操作详细等 5 个方面总结

Day 4:list 和 tuple 的 13 个经典使用案例

Day 5:dict 和 set 基本操作、字典视图等 6 个方面详解总结

Day 6:dict 和 set 的 15 个经典使用例子

Day 7:数学运算、逻辑运算和进制转化相关的 16 个内置函数

Day 8:16 个类型函数和 10 个类对象相关的内置函数大盘点

Day 9:Python 字符串和正则介绍总结

Day 10:Python 文件操作 11 个案例总结

Day 11:Python 时间模块使用逻辑大盘点

二 Python 实战环境搭建

Day 12:Python 四种常用开发环境总结

Day 13:Python 包安装的 2 个实际案例(包括安装遇到的各种问题及解决方法)

Day 14:7 个 Web、爬虫、打包工具 PyInstaller 等包介绍和入门案例总结

Day 15:8 个数据分析、机器学习和深度学习包和框架和入门案例总结

Day 16:PyInstaller 打包过程详解

三 Python 进阶篇

Day 17:Python 列表生成式高效使用的 12 个案例

Day 18:Python 对象间的相等性比较等使用总结

Day 19:yield 关键字和生成器,nonlocal 关键字和 global 关键字使用总结

Day 20:Python 函数的 5 类参数使用详解

Day 21:5 个常用的高阶函数,3 个创建迭代器的函数

Day 22:Python 多线程和协程 6 方面使用逻辑通俗易懂总结

Day 23:Python 应用迭代器和生成器的 9 个案例

Day 24:Python 30 道高频面试题及详细解答

Day 25:Python 最被低估的模块 collections 3 个常用类总结及案例解读

Day 26:Python 装饰器的本质解密,结合 3 个装饰器的案例

Day 27:Python 常见的 10 个坑点合集和 logging 日志管理模块的使用总结

Day 28:Python 后端框架 Flask 和前端 HTML+CSS+JS 数据交互案例讲解和实战

四 Python 数据分析篇

Day 29:NumPy 通过这五大功能顺利入门 + 10 道练习题

Day 30:NumPy 进阶高效使用逻辑,掌握这 5 方面功能

Day 31:NumPy 广播机详细解读,10 道练习题和数据集小案例

Day 32:Pandas 读写文件 5 类问题及 30 个参数和案例使用总结

Day 33:Pandas 两个核心数据结构 iterrows 和 itertuples 比较,特有的 setindex、resetindex、reindex 操作

Day 34:Pandas 实战 Kaggle titanic 幸存预测之 7 步数据清洗

Day 35:Pandas 数据分箱的 2 种方法,转换为哑变量(dummy)的 2 种方法,连接两张表的 4 种不同方法总结

Day 36:Pandas 常见异常汇总:Unhashable Type, SettingWithCopyWarning,文件编码不匹配问题及解决方法

五 数据分析实战篇

Day 37:绘图神奇 Pyecharts 快速手上的方法详细总结,从 Charts 和 Options 两大模块入手

Day 38:Day 38:Matplotlib 绘图原理总结,绘制多图的三种方法总结,12 种常用图完整代码解析以及制作动画方法总结

Day 39:Kaggle 电影影评数据集,Pandas 数据分析实战-数据预处理部分

Day 40:Kaggle 电影影评数据集,Pandas 数据分析实战-数据挖掘及分析

Day 41:PyQt 制作 GUI 实战——制作小而美的计算器,Flask 实战——制作网页版计算器

六 基础算法篇

Day 42:程序员必知必会的基本算法知识大盘点

Day 43:8 个排序算法原理总结,包括 Python 完整代码实现

Day 44:掌握算法必考的动态规划算法,2 大核心要点和 3 个经典案例总结

Day 45:面试必考 Leetcode 算法题实战和分析总结

七 机器学习算法篇

Day 46:必备统计学知识:概率,期望,方差,标准差,协方差,相关系数,t 检验,F 检验,卡方检验

Day 47:机器学习必备的数学基础知识:最常用的求导公式,矩阵特征值分解等

Day 48:机器学习不得不知的概念:样本空间,特征向量,维数,泛化能力,归纳偏好等

Day 49:机器学习之 9 种常见的概率分布及图形绘制展示

Day 50:OLS 线性回归实战上篇:机器学习回归原理详细介绍,包括假设和原理,梯度下降求权重

Day 51:OLS 线性回归实战下篇:手写不调包实现线性回归算法实战

Day 52:贝叶斯分类案例解析和编写

Day 53:贝叶斯算法实战:实现单词拼写纠正器

Day 54:高斯混合模型聚类原理分析和求解总结

Day 55:聚类模型实战:不调包实现多维数据聚类案例

Day 56:机器学习降维算法之 PCA 原理推导和案例解析

Day 57:Kaggle 机器学习项目实战:从数据预处理,到模型选择,调参技巧,训练技巧和结果分析

Day 58:AI 专家 Alicia 总结: 深度学习背景知识,反向传播算法,训练神经网络常用技巧等经验总结

八 经验分享

Day 59:使用 TensorFlow、PyTorch 深度学习进行项目实战

Day 60:美国名校博士、AI 专家 Alicia 关于如何学习数学、机器学习、数据分析、前言深度学习技术的总结和展望

Day 61:专栏总结和 zglg 过往 5 年一线互联网公司算法开发经验分享

专栏亮点

  1. 70 多个案例教学全面解析
  2. 环环相扣助你形成知识体系
  3. 最新 Python 面试题配套讲解
  4. 项目实战带你彻底打通全栈
  5. 两位大厂和美国 AI 博士带你全方位清扫升级障碍

适合人群

  1. Python 语言爱好者
  2. Python 语言进阶
  3. Python 数据分析爱好者
  4. 广大程序员想入门算法者
  5. 机器学习算法入门
  6. 机器学习算法进阶
  7. Python 和人工智能爱好者

作者简介

avatar

zglg,5 年算法开发工作经验,知名互联网公司高级算法工程师,创建的 Python 案例 GitHub 库一个月 star 量从 0 到 1700+,被 AI 权威媒体量子位报道;

avatar Alicia,美国名校数学专业博士毕业,惠普高级数据分析师,现就读于美国顶尖学府 AI 专业博士后,具有丰富的工作和科研经历。

购买须知

  • 本专栏为图文内容,共计 60 篇。
  • 付费用户可享受文章永久阅读权限。
  • 本专栏为虚拟产品,一经付费概不退款,敬请谅解。
  • 本专栏可在 GitChat 服务号、App 及网页端 gitbook.cn 上购买,一端购买,多端阅读。

订阅福利

  • 订购本专栏可获得专属海报(在 GitChat 服务号领取),分享专属海报每成功邀请一位好友购买,即可获得 25% 的返现奖励,多邀多得,上不封顶,立即提现。

  • 提现流程:在 GitChat 服务号中点击「我-我的邀请-提现」。

  • 购买本专栏后,服务号会自动弹出入群二维码和暗号。如果你没有收到那就先关注微信服务号「GitChat」,或者加我们的小助手「GitChatty6」咨询。(入群方式可查看第 4 篇文末说明)。

购买须知

  • 本课程内容版权归北京码字科技发展有限公司独家所有,未经授权,不得转载。
  • 本课程为虚拟产品,一经付费概不退款,敬请谅解。
  • 添加 GitChat 助教俏俏(微信 ID: gitchat2025),加入免费技术交流群。
× 订阅 Java 精选频道
¥ 元/月
订阅即可免费阅读所有精选内容